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ABSTRACT

We study the existence, uniqueness , regularity and dependence upon data

of solutions of the abstract functional different ial  equation

(1) + Au ~ G (u) (0 < t < T ) ,  u ( 0 )  = x

where T > 0 is arbitrary, A is a given m—accretive operator in a real

1Banach space X , and G : C ( [ 0 ,T ] ; D ( A ) ) -
~ L (0 ,T ; X )  is a given mapping .

This study provides simple proofs of generalizations of results by several

authors concerning the nonlinear Volterra equation

( 2) u ( t )  + b * Au ( t )  ; F(t )  (0 < t < T)

for the case in which X is a real Hu bert space. In (2 )  the kernel b is
t

real , absolutely continuous on [0,TJ, b * g ( t )  = f b(t - s) g ( s ) d s , and
0

F € W1’1(0 ,T;X).

AXIS (MOS) Subject Classifications : 47Hl5, 34KO5 , 45N05 , 34005, 47H10, 47H05 ,
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EX PLANATION

An rn-accretive operator”
1’ 
is an abstraction which covers many

nonlinear differential operators arising in applications. This paper

shows how certain problems involving evolution equations with m-accretive

operators ~~d delay effects in the time dependence can be discussed within

the existing abstract theory. Indeed , a (theoretically) simple iterative

procedure is shown to converge to the desired solution.
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I
AN ABSTRACT FUN CTIONA L DIFFERENTIAL EQUAT ION AND A RELATED

NONLINEAR VOLTE RRA EQUATION

N . G. Crandall1 and J. A. Nohel 2

1. Introduction and Preliminaries. We study the initial value problem

(~~~~+Au 3 G(u) (0 <t ~~~T)
(1.1) cit

L u(O)
where A is a given m-accreUve (possibly multi-valued) operator in a real Banach space

X with norm fl ~ 
, and G is a given mapping

(1.2) C : C([O,TJ ,~7~)) ‘+ L1’(O ,T;X)

(See (1) and (8) concerning the notion of an m-accretive operator and other notation not

defined here.) Points of interest will be the existence, uniqueness , regularity, and

dependence upon data of solutions of (1.1). The method employed is simple. If x c  D(A)

and g E L1(O,T;X), then the evolution problem

(~~~~+ A v a g  (O < t < T )
(1.3) 

lit

“ x

has a unique “integral” solution (see (1), (5), or (8)) v e C((O,T)~ r (A)). Let v H(g)

denote this solution. A solution of (1.1) is by definition a function u C C((O.T);D (A))

such that u H(G(u)). Under suitable assumptions , some iterate of K = H(G) is a

strict contraction and (1.1) has a un’que solution u. Further assumptions allow stron~cr

conclusions, e.g. the solution of (1.1) is LipSchitz continuous or a strong solution

(see below). The method adapts easily to generalizations (e.g., the operator A = A (t)

depends on time), and to the study of the dependence of u on A , G, and x. The

basic idea used here is already found in (5) and exploited for C as in (1.2) in (9).

Sponsored by:
1) The United States Army under Contract No. DAAG29-75—C-0024;
2) The United States Army under Grant No. DAAG29-77—C-0004 and the National  Science

Foundation Grant No. NCS75-2l868.
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Much of the motivation for our study of (1.1) lies in the fact that we thereby

obtain very simple proofs of generalization of results due to several other authors.

MacCamy (153 considers the problem

+ mAu(t )  + a * Au( t) = f(t) (0 < t < T)
(1.4) cit

L u(0 )  =

where a > 0 is a constant , A is a maximal monotone operator in a real Hu bert space
t

H, and a is a real kernel, We use the notation a * g ( t)  = J a ( t  - s )g(s )ds .
0

Under various additional restrictions, MacCamy transforms the problem (1.4) to one of

the form (1.1) by the method of the proof of Proposition 1 below. He then treats the

resulting special case of (1.1) via a Galerkin argument (which necessitates further

restrictions) . Our results concerning (1.1) are directly applicable to problems of

the sort discussed in (15) . Moreover , we also obtain generalizations of results of Barbu (2 ) ,

( 33 ,  Londen (13) , Gripenberg (11) and Londen and Staf fans (143 concerning equations of

the form

(1. 5) u ( t )  + b * Au (t) ~ F ( t )  (0 < t < T)

The Volterra equation (1.5) was treated in a Hu bert space setting by these authors ,

whereas we obtain results in general Banach spaces by very dif ferent  and simpler proofs.

Section 2 contains the basic results for (1.1).  Applied to the study of (1.5)

these results show, among other things, that (1.5) has a unique generalized solution

whenever b is ’ absolutely continuous, b(0) > 0, b’ is of bounded variation on (0 ,T) ,

F E W1’1 (0,T;X) (see below) and F(0) C D(A). This fact is established in Section 3,

but we present below the basic connection between (1.1) and (1.5) in the case of strong

solutions (which will be defined shortly). Section 4 sketches the relationship

between this paper and the existing literature and outlines some generalizations .

First recall that if I is an interval , then u C w1” (I ;x)  mea ns that there is

a function V : I -
~ X which is strongly integrable on I ( i .e .  v i  L1(,T;X) ) such that

t
u ( t )  — u ( s )  — J v(T) d’ r  (t , s c I)

S

—2—
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I
then u’(t) — v(t )  a.e. on I. It is also known (e.g. (6, p. 1481 or (1, p. 16)) that

u e W1’1(11x) is equivalent to u : I + X being absolutely continuous Cu C AC (I ;X))

and differentiable a.e. on I. If u e AC(I;X) and X is reflexive, then u is

automatically differentiable a.e. on I. -

Definition. A strong solution of (1.1) on (0,T) is a function

u e  11’1(O,!F;X) fl C(( O,1),~~~ )) satisfying u(0) — x and u’(t) + Au (t) ?G(u)(t)

a.e. on 10,?).

Definition. Let b e  L
1(0,T;IR) , F C L1(0,T;X). A strong solution u of (1.5) on (O,T)

is a function u C L~ (0 ,T;X) for which there exists w C L~’(0,T;X) with w(t) e Au(t)

and u(t) + b * w(t) F(t) a.e. on (0,TJ.

Proposition 1. Let b e  AC((0,T);]R), b’ c BV([0,T];P) (i.e. b’:(O,T) -
~ IR is

of essentially bounded variation), Pi W1’~’(O,T;X) and b(0) = 1. Let u be a strong

solution of (1.5) on (0,T1. Then u is a strong solution of (1.1) where

( Ci) G(u)(t) = f ( t )  + r * 1(t) — r(0)u(t) + r(t)x — u * r ’(t)

(ii) 1(t) = F ’(t )

(1.6) (iii) x = F(0)

(iv) a— b ’ ,

1.. (v) r e L~’(0,T;I~) is defined by r + a * r -a

and we have used the notation

t
(1.7) u * r ’( t) — f u ( t  — s )dr ( s )

0

Conversely, let r C BV((0,T)uR), f - C  !}‘(O ,T ;X) , x c  D(A ) , and G be given by

(1.6(i)). If u is a strong solution of (1.1), then u is a strong solution of (1.5),

where

t( (i) F(t) x + J f (s ) d s

I 0

(1.8) ( i i )  a + a * r -r

(iii) b(t) = 1 + / a (s)d s
• 0

—3 —
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Proof: Let u be a strong solution of (1.5) on (0,T) and u + b * w — F where

W e  L~ (0 ,T; X ) ,  and w( t )  e Au( t )  a .e. on (0 ,T) .  Since b e  AC( [0 ,T) :~~ ) and

F e  W1’1(0,T;X), u — F — b * W E  W1’1(0 ,T ;X ) and u ’ + b(0)w + b’ * w — F’. Since b(O) = 1,

(1.9) w + b’ * w — F’ - u’

Simple facts about Volterra equations imply that if r ,a C L~i0 ,T;]R) are related via

( l .6 ( i v ) ),  then for V ,W C  L1(O ,T;X) we have

(1.10) w + a * w = v < ~~> v + r * v w .

The reader can easily check this (or see (16 , chp . 4 ) ) .  Hence (1.9) and r + b’ * r =

imply

(1.11) w F’ — u + r * (F’ — U ’)

Finally, a = b’ C B V ( ( O ,T) ;J ~) is equivalent to r e BV((0 ,T] ; I~) (Bellma n and Cooke (4;

Theorem 7.43), so

(1.12) r• * u ’(t) = r(O)u(t) — r ( t ) u (0 )  + u * r’(t)

Since u(0)  = F(0) x and w(t) c Au( t )  a .e. ,  (1.11) and (1.12) show that u is a

strong solution of (1.1) with the identifications (1.6).

The converse is proved by reversing the steps. If u e W1’1 (O ,T;X) is a strong

solution of (1.1) on (O ,TJ ,  then G ( u ) (t) — u’(t) = w(t) C Au(t) i.e. If G is given

by ( 1. 6 ( i ) )  and (1.12) is used, one finds that

(1 — u ’) + r * Cf — u’) = w

and by using (1.10) that w + a * w f — u ’ . Integration of this equation yields (1.5)

with the identifications (1.8) .

Remark. When considering (1.5) one may reduce to the case b(O) = 1, provided that

b( 0) ‘ 0, since A may be replaced by b(0)A. Formally, b * Au = b * Au, where

b = b(0) 1b , A = b ( 0 )A .

—4—



‘~~~~~~~~~‘‘~~
‘“
~~~~ 

‘• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~- ——-— ‘— --‘ -“-.“
~~“~~~‘- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •,, ~~~~~~~~~~~ ,, ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ =‘_•7_”•_

~~
_-_ ’•__ ‘•“~~

••
~~ ~~~~~~~~~~~ 

— - - •— -

2. Principal Results. It is assumed throughout this section that A is m-accretive.

The following simple result establishes the existence and uniqueness of solutions of (1.1). f
Theorem 1. Let x i  D(A) , y e  L1(0,T;R) and let C : CUO ,T);D(A)) -‘ L1(0,T;X) satisfy

t
( fl~~u~ — G(v) I~ 1 

< / y(s)  f lu  — vI~ ds
(2.1) L (0 ,t ;X) 0 I. (0 , s ;X)

L for 0 < t < T  and u, V E  CU O, T 1 ; D ( A ) )

Then (1.1) has a unique solution u c  C((O,T);D(A)).

We remark that assumption (2.1) implies that the value of C(u) at t € (0,T) depends

only on the restriction of u to (0,t).

Under further assumptions one can obtain greater regularity of solutions of (1.1)

than mere continuity. For example:

Theorem 2. In addition to the hypotheses of Theorem 1 assume that there is a function

k (O ,~ ) -t [0,’”) such that

~
— var(G(u) :[0,tJ) < k(R) (1 + var(u: (0,t))

(2.2)

~~~ i1~~(u) (O+) JJ < k(R), 0 < t < T

whenever u C C((O,T);D(A)) is of bounded variation and h u l l  < R. (The varia—
L (O ,T;X )

tion of a function v over an interval I is denoted by ‘var(v:I).) If X E  D ( A ) ,

then the solution u of (1.1) is Lipschitz continuous on (0,T]. If X is also reflexive,

then the solution u of (1.1) is a strong solution on (0,TJ.

Finally , we note that the solution u of (1.1) depends continuously on the “data ”

A , G , x in the following sense:

Theorem 3. Let the assumptions of Theorem 1 be satisfied. Let an m-accretivc operator

A in X , a mapping C : CUO ,T J ;X )  + L1 (O, T;X) and x C 0(A ) be given for
fl — n n n
n = 1,2 Assume that :

( The inequality (2.1)  holds with C replaced by G for all
(2.3)

L u , v C  C ( ( 0 ,T ) , X ) , with the same y for each n = 1,2,...

(2.4)  lim G
n
(U) G(u) in L~i0,T;X) for u C C((0,T1;DCA ))

—5—
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(2.5) ha (1 + X1 )1z (1 + XA) ’z for ~ > 0, z e
UI n

and

(2.6) lia x a x e  ~T~I
n4~

Let u I C((0 ,T3 ; ) )  be solutions of (1.1) on (0 ,?) with A replaced by A , G

replaced by C ,  x rep~aced by x and let u e C((O,T) ;D(A) ) be the solution of (1.1)

on (0 ,?) . Then h a  u — u in C((0,T);X).m

Proof of Theorem 1: Denote the integral solution of v + Av a g, v (O) = x, g C L’(O, T ;X)

by v — 8(g). We seek a fixed point of th. map K : C((0,TJ;D(A)) + C([0,TJ;D(A)) defined

by K(u) — H(G(u)). By properties of integral solutions

IIK (u) (t) — K (v) Ct) Ii IIC(u)Cs) — G (v)(s) lids

for 0 < t  < T , u ,v e C((0 , T3 ;D(A)). By (2.1) we thus have

t
(2.7) (JK(u) — K(v) ~J < f y(e)  flu — vll ds (0 < t < T)

L (0,t;X) 0-—— L (0,s;X)

Iterating (2.7) one shows by induction that

(2.8) ilK~
(u) - K~ (v) 

~ If  Yj
(8) ilu - vii ds ( I~~ 

IT)
L (0 ,t;X) 0 L (0 ,s;X)

where

(2.9) Yj
(S) — y(s ) / Y~~1

(a)do; j — 2,3 ‘y
1 

= y

T
Now h i s  f y (s)ds = 0, since y e  L210,T, R) , and so K3 is a strict contraction on

j 4 0

C (L0,ThD(A)) for sufficiently large j. This establishes the result.

Remark: Theor em 1 is a mild generalization (with the same proof) of (9; Lelmsa 2.1).

Proof of Theorem 2: Define the funct ion u
0 

: (0 ,?) .t X by u
0
(t) — x, 0 < t I T. The

proof of Theorem 1 shows that the iterates u~~1 — K (u ) — H(G(u )), n = 0,1,..., converge

uniformly to the solution u of (1.1) on (0 ,’r3 . Hence the iterates u are uniformly

-6- 
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bounded . If g I SV((0,T);X) in the evolution equation (1.3), then the solution

V H(g) satisfies

t
- 

( var (v: (0 , tj )  < ~ g(0+) - y~~ t + f var (g:(0,rj )dr
(2.10) 0

1..~. for y € Av(0) Ax and for 0 t IT

In fact (2.10) follows from the stronger inequality

(llv(~) — v(n)Ii I k — n i l Il g ( o÷ ) — y l l + var(g:(0,t)))
(2.11)

for y e  Av (0), 0<~~ ,n < t

See, e.g. (1, p. 132) or (5, Prop. 1.6]. Thus by (2.2), (2.10) and the uniform boundedness

of (u }, there exists a constant c such thatn

t
(2.h2) var (u 

1
:(0 , t ) )  I c(1 + f var (u: (O,~r))dr) Co lt IT)

n o
But then var(u 

1:(0,t)) ~ c exp(ct) . Thus (var (u :(0,T3)} and var{G (u ):(0,T])n — n
are both bound ed . By (2.11), {u) is uniformly Lipschitz continuous. Hence

U = him U is Lipschitz continuous. If X is ref lexive , u € W”1(’~Q,T~,;%) follows
n-ta

from the absolute continuity, and u is a strong solution of (1.1) on (0 ,?) .

Proof of Theorem 3: In the proof of Theorem 1 the solution of (1.1) was represented as

the unique fixed point of a mapping K = HG. H depends on the “data ” A and x which

we now exhibit explicitly: H(A ,x ,g) is the integral solution of (1.3) for x C D(A)

and g C L1(0,T;X). We indicate the dependence of K on A , x, C of (1.1) by

K(A,~~.G)(u) = H(A ,x ,G(u))

In the proof of Theorem 1, K3 was a strict contraction for some j. Both j and the

contraction constant depend only on the function y which we assume in

(2.3) to be uniform in n. Thus, by the argument of Theorem 1, there is a j > 0 and

0 < £ < 1 such that if K (u) = K(A ,X , G ) ( u ) ,  then

r l l K ~ U - K~~v I i  l i l l u  - vii _

(2.13) 
L (0,T;X) L (0,T;X)

for u , v C C((0,T);X), n = 1,2 

If u € C ( ( O ,T ) ; D( A) , u € C((O,T) ;D(A )) satisfy the equations K(u) — K(A, x,G)(u) = u

—7—
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and K (u ) — K(A ,x ,G ) Cu ) U , then using (2.13)n n  n n n  a n

Ilu — u i i _ — Ik~(~i~) - K~ (u) ii

I ‘~
‘
~~

‘
~n~ 

— K~ (u) ii _ + iiX~ (u) 
— 1C~~(u) iI _

IL ilu — uji _ + lIK~ (u) 
— K~ (u)il

where fi IL denotes the norm in L’”(O,T;X). Thus

flu — U l I  11 £ ilK~(u) K~ (u) IL,

and the assertion follows if ilK~ (u) — K~ Cu) fi -
~ 0 as n -t . For this it suffices

to know that iiK~ (u) 
— K(u) 

~~~~ 
ilH (A ,x ,G )  Cu) - H(A,x,G) Cu) ii ,, -~ 0 as n -~ ‘“.

• But the hatter follows from (5, Prop. 1.23] in view of (2.4), (2.5), (2.6). The proof

is complete.

• Remark 2.14: The dependence of the fixed point u of the mapping X (A,x,G) on x and

C can be exhibited nore precisely. Let u = K(A,x,G)(u), U = K(A ,x,G)(~ ) where C, G

satisfy (2.1). Then by properties of integral solutions and (2.1)

t
ilu(t) — u(t) II I lix — 

~il + I IIG(u)(s) — G(u )( s)  l i ds
0

- t - t 
-I lix — x ii + f ilC(u)(s) — G ( u) ( s )  li ds + f li G u~ s — G(u)(s) lids

0 0

- t
< e(t) + f y(s) flu — ull ds

0 L (O ,s;X)

where

t
(2.15) e( t)  lIx — + f IIG(ufls) — C ( u ) ( s ) l l d s

0

Thus by Gronwall’s inequality

- t t
( 2.16) llu(t) — u( t )  Ii I flu — ull I e(t) + f exp(j  y ( r ) d - r ) e ( s ) d s

L (0,t;X) 0 S

- 

~~

— - - - • - - —
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3. Applications to the Abstract Volterra Equation. Consider the problem

(3.1) u + b * Au ? F

where b, F are as in Proposition 1 and A is m—accretive on X. Let A > 0 and

= A~~ (I — (I + AA )~~) be the Yosida approximation of A. A
A 

: X -, X is Lipschitz

continuous, so a simple contraction argument shows that the approximating problem

UA + b * A A UA = F

has a unique strong solution u~ on (0,T) if b e  L1 (0 ,T; R)  and F C L1
(0,T;X).

~ zr main result for (3.1) is:

Theorem 4. Let b , F satisfy the assumptions of Proposition 1 and F(0)  e 0(A) . Let

be the solution of 
~
3•1

~ A on (0,TJ . Then him uA = u in C([0,TJ;X ) where u is
A +0

the solution of the delay equation (1.1) on [0,?) of Theorem 1, with the ident if icat ions

(1.6). If, moreover, F’ C BV((O,T),X) and F(O) C D ( A ) , then u is Li pschitz

continuous on [0,?]. If X is also reflexive, then u € W1’1(0,T;X) and u isa

strong solution of (3.1).

Proof: With C given by (1.6) (i) we have

llG uxt — G(v) ( t ) f l  I C I r ( 0 ) i + var(r:(O ,t)))liu — vi i

L (0,t;X)

Hence

t
(3.2)  i l G(u )  — G(v) II 1 I f y(s) Ilu — v i i  = 

ds
L (0,t;X) 0 L (0,s;X)

with -

(3.3) y C s )  = lr ( O ) l + var (r  : [0 ,s) )  .

Since r C BV((0,T];R) (bec~use a b’ has this property — see Proposition 1), ( 3 . 2 ) ,

(3.3 ) imply that C satisfies (2.1). By Proposition 1, u1 is a strong solution of
du A(3.4)  + A

A
uA ~ 

G (u
A ), uA (O) — F(0)

One has him (I + uA A
)
~~

z (I + pA) 1
z for ii > 0 , z e X. Thus by Theorem 3 the u AA 40

converge to u in C((O,T);X) as desired . If F’ f BV((0,T);X), (1.6)((i) — (i i i))

imply that

—9-
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(var (G(u):(O ,t)) < C(1 + var (u:[O,tJ)
(3.5) (

ii ~~(u) (°~ ) ii I C~ 0 1 t I T

where C is a constant depending on F(0), F ’( O~
’) ,  var (F’ :(O ,T]), r(0+), and

var(r: (0,T)). Thus Theorem 2 implies that the solution u is Ljpschjtz continuous on

(O ,TJ if u(0) = F(0)  1 0(A). If X is reflexive, u is a strong solution of (1.1)

4 on (0,?), and by Proposition 1, u is a strong solution of (3.1) on (O,T). This

completes the proof of Theorem 4.

Observe that if (3.1) has a strong solution u on (O,T) under the assumptions of

Theorem 2, then it follows from Theorem 2 and Proposition 1 that him uA = u in
1+0

C ( ( O ,T);X). However, whether or not (3.1) has a strong solution, the solutions U
1 

of

converge to a iiinit u as A + 0. We adapt the point of view that this limit

is a generalized solution of (3.1):

Defini tion. Let the assumptions of Theorem 4 be satisfied. Then u = him u
1 !!~A +0

C ( ( 0 ,T ) ; X )  is the generalized solution of (3.1) on l0 , T 1.

The generalized solution is a continuous function of the data b , A , F via Theorem 3.

The dependence of the solution on b , F can be estimated explicitly by the method of

Remark 2.14 . We present below the simpler estimate which results from varying only F.

Theorem 5. Let b satisfy the assumptions of Theorem 4 and F ,F € W1’1 (0 ,T ;X) , F ( 0 ) ,

F(O)  e D( A ) . Let u ,u € C ( [ 0 , T ) ; D ( A ) ) be the generalized solutions on I0 ,T1

of the equations u + b * Au 3 F and U + b * Au a F respectively. Then

t t
I luCt)  — u(t) i i  < e(t )  + f exp(J y(r)dr)e(s)ds (0 1 t IT)

0 5

I C

e(t )  - C
1 

I lF(O) - F(O) JJ + c2 / fl F ’ (s) - F ’ (s) ds

c1
1+  ~ fl 1 c

2
a l +  ii r li

L (O ,T,F) L (O,T;R)

y ( s) — I r ( O + ) i  + v a r ( r : (0 , s) )

r is determined by r + b’ * r — -b’.

-10- 
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Theore~~ 5 is proved by substituting into (2.15) , (2.16) and estimating. Here G , C

are given by (h, 6) (j) with f = F’ , x F(O) and f — F’, x = F(0) respectively; y

is determined from (3.2) , (3.3) . Theor em 5 implies that the napping : W1” (O ,T;X )  ? F -~

the generalized solution u of (3.1) on (0 ,?) is Lipschitz continuous on the set of

F e  W”1(0,T;X) satisfying F(O ) C D(?~) .  Thus if X is reflexive, the generalized

solution of (3.1) may be regarded as the unique limit of strong solutions .
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4. Connections with Other Research and Generalizations. Concerning the existence and

uniqueness of solutions of the Volterra equation (3.1), Theorem 4 generalizes results

of Barbu (1) , Londen (13) and MacCamy (15), all for the case X = H a real Hu bert space,

and Au — ~ç(u), where a~p denotes the subdifferential of a function ç : H -, (~-~‘,“J

which is convex , l.s.c., and proper, and of Gripenberg (11; Theorem 1] for the case in which

X = H  and A is a maximal monotone operator on H. Barbu (2 )  and Gripenberg Il l ;  Theorem 21

consider certain cases when the kernel b is operator-valued. Our assumptions concern-

ing the kernel b and the function F are closest to those of Ill) and [13) . In

Barbu El) the kernel b is assumed to be of positive type which , while less general

in some respects than the kernels of Ill], (13) and this paper does permit the possibility

that b(O+) +~‘. Londen and Staffans  (14) also study (3.1) in the case X = H, Au =

and they relax the assumption of (11) and (13) that b’ C BV [O ,T) ;  they require instead

that b ’ satisfies a frequency domai n condition which holds au toma tically if b’ € BV(0,T].

Theorem 5 has not been considered by any of these authors.

We should mention how the case in which A = ~ç is treated in our context . Frost

(6 , Thin . 3.6) it follows at once that in this case the solution u of (3.1) provided

by Theorem 4 satisf ies u ’ C L2 (O ,T;H) if only F ( 0)  € D (ip ) and F’ C L2 (O, T;H) . If

F(0) C 0(ç) and F’ C L2(0,T;H), then we have tu ’ C L2(0,T;H). Moreover ,

b C BV( (0,T) ;H) can be relaxed to (for example) the assumption that b e  AC ([0,T);H)

and b’ C BV([0,P
0
);H) for some T

0 
> 0 by use of a continuation argument as in [13) .

Theorem 4 can be used to strengthen a result of Cl~ment and Nohel [7; Theorem 51

concerning the positivity of solutions of the Volterra equation (3 .1) .

If A ( t )  is a m-accretive operator for almost all t C (0 ,T ) ,  D(A ( t ) )  = 0 is

constant a.e. and g C L~~(0 ,T ; X ) , it is known (10) that the evolution problem

(d v
— + A(t)v Cg(t)

(4.1) S. (Q I t I T)

L u O ’~ x

has a “solution” v C C ( ( O ,T ) ; D )  if x I D, provided only that either -

—12—
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There exists a Banach space Y, h € L~ (O,T;y), and a continuous

function L : L0, )  -~ (0, ) such that
(4.2)

— llA 1(t)x — A
1
(s)xII 

~ 
< f lh ( t )  — h( s) II 

~ ~~ il x li 
~

for all A > 0, x ~ X and almost all s,t C E 0 ,T)

or

(
There exist h ,L as in (4.2) , h e  BV((O,TJ;Y) such that

(4.3) 11A1(t) x — A1(s)xll ~ ~ IIb (t ) — h( s)  II ~L( lix ll ~~ 
(1 + 11A 1(s)xll

for A ‘ 0, x e K and almost all s,t e (0 ,TJ

where A
1
(t) = A~~~(I — (1 + AA (t))

1
). Moreover , if v = H (g) is the solution of (4.1), then

t
(4.4) IIH(g)(t) — H(g) (t)~ I / f ig ( s )  — g(s)  II ds (0 1 t I T)

0

where g,s~ e I}(0 ,T;x) . Since the property (4.4) of H was all we needed to find fixed

points of the map K HG in Section 2, we can therefore solve the more general delay

equation

+ A ( t ) u  s G(u) , u( 0)  = x (0 1 t I T)

where G(u) satisfies (2.1), (2.2), and also the Volterra equation

• 
- u + b 0A ( t ) u a F  ( 0< t < T ) ,

as in Sections 2 and 3. The notion of “solution” of (4.1) is more complex than if A

is independent of t, and the technical details concerning (4.1) are otherwise too

complicated to warrant more precision here. Thus we remark only that (4.2) or (4.3)

suf:ice for a good existence theory and , given knowledge of (4.1), the proofs are the

same. See (10) and (17) concerning (4.1). In particular, one easily generalizes the

results of Gripenberg (11 , Theorem 2).

Another type of generalization arises if we relax the assumptions concerning C in

Theorem 1. For example let C be only “locally Lipschitz” in the following sense:

• 

-~~ _ _ _ _ _ _
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( Let x € 0(A) , u
0
(t) — x , o < t T, R > 0,

H = (U € C ( ( 0 ,T ) ;D ( A ) ) : flu — u0 11 1 F, and y 1
I L(O ,T;X)

(4.5) 
~ Asswne - that C : 14 L1 (O ,T;X), satisfies
I t

~~_ 
Jj G(u )  — G(v) 

~ 1 I / y(s) flu — v i i  = ds for u, v € 14
L (0,t;X) 0 L

Then we can prove the following “local theorem” for the delay equation (1.1).

Theorem 6. Let (4.5) be satisfied. Then there is a T
0
, 0 ~ T0 IT 

and a (unique)

u I H such that

(4.6) + Au a G(u) , u (O) x , 0 1 t I To
Proof : Let w

0 
e C((O,T);D(A)) be the solution of w’ + Aw a C(u

0
) ,  w ( O )  = x. Choose

T
o

> O such that

• 

~~~ 

IIw~(t) - xii 1 R/2 (0 
~ 

t I T
0
)

(4.7) T
0( / •f(~ )~35 1 1/2

0

Let v C H and u be the solution of

u ( 0 ) = x .

Then using (4.5) , (4 .7)  one has

llu(t) — xli  I DuCt) — w
0
(t) Ii + 11w 0 (t) — xli

t

.~~ I 11G(v) (s) - G(u
0
) (s) li ds + R/2

0

R< R f y ( s ) d s +~~~~~~R , (0 1t I T 0
) .

0

The solution operator v -# HG(v) = u thus maps the set H into

C ( ( 0 ,TJ;D (A)) : IIu(t) — u
0
(t) ii I~~ 

for 0 1 t IT0
). Modify this mapping by setting

(HC (v) (t) if 0 1 t I
(v) = (

0 (, HC(v) (T0
) if T

0 
< t I T

N is now invariant under and
0

• — 14— 
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IlK Cu) — K

T 
(v) I f  y (s )  Ilu — vii ds (u,v e H)

0 0 L (0,t;X) 0 L (0,s;X)

Therefore , K
T 

has a unique fixed point u which is a solution of (4 .6)  on t0
~
T
~
).- 

0
This completes the proof of Theorem 6.

• Finally, if assumption (2.1) is relaxed to

(4.8) IIG(u) — G(v) 
~ 1 I M flu — vii —L (0 ,T ;X)  L (0 ,T;X)

so that G(u)  Ct ) can also depend on the values u ( r )  for t > t (which (2.1) does

not allow) , then the technique of Theorem 1 shows that equation (1.1) with G replaced

by CG has a unique solution whenever r I M  < 1.

We also wish to point out that the method developed in Sections 2 and 3 can be

used to study the nonconvolution Volterra equation

t
(4.9) u( t )  + / b(t,s)Au(s)ds a F(t) (0 I t I T)

0

where A is m—accretive on X and F e  W1’1( ( O ,Thx ) . Concerning b we assume that

it is defined on the region T = {(t,s) : 0 -, s It I Tb that b(t,s) is as smooth

as required for the calculations which follow, and that b(t,t) > 0 (0 1 t I T).

• Differentiating (4.9) one obtains

(4.10) (t) + b(t,t)Au (t) + f 
~~ 

(t;s)Au (s)ds a F ’ ( t ) ; u ( 0 )  = F(0)

~~tting ~ (t) = b(t ,t) > 0, t = •(t) = / ç(s)ds (01 t IT), ~~(t )  =

(0 1 T  I $(T)), and defining v(t) = u(~~~
1( T ) ) ,  c(r,o )  = b(~~~~( r ) , ~~~~( o ) ) ,  an elementary

calculation shows that (4.10) is tr ansformed to the equivalent initial value problem

T ~~~~
- (r ,a)I + A v ( T )  + f Av(a)d a il’(r) (0 1 T I

(4.11) 41 c (o ,0)

v(0)  = x = F(0)

(i ,o)
Let k(T ,o) = 

T 
, and define the associated resolvent kernel r(T,a) by thec (a ,o)

—15—
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I
equation ((17; Ch. IV)):

T
(4.12) r( t ,O) + f k ( t ,~~) r (~~, a )d~ a —k(i ,o) (0 I ° I I I •(T))

a

A calculation analogous to that of Proposition 1 shows that the problem (4.11) is (under

suitable assumptions) equivalent to the initial value problem

(4 .13)  + Av a C(v )  (0 I ~ I •( T ) ;v ( O )  = x)

where

I
( C (v ) ( r )  = i~~(t )  + f r(i,a)4i(a)da — r(r,T)v(I)) 0

(4.14)

+ r (- r ,O)x + / v ( t — a ) d  r ( r , a )  ( 0 1 1  I $ (T) )
0

The Stieltje’s integral in (4.14) is well defined if r ( r , a)  is of bounded variation

with respect to a on 0 ~ a I T,  uniformly in T on 0 1 ~ I $(T). Under this

assumption it is clear that C defined in (4.14) satisfies the estimate (3.2) with

y(s) = Ir(s,s) + sup v a r (r ( r , o) : 0 1 ° I I ) .  Thus one may apply the theory developed
0<t<~ (T)

in Section 2 and arrive at analogues of Theorems 4 and 5 for the nonconvolution equation

(4.9). We shall not persue this this topic further.

Finally, we remark that if X = P and A is a nondecreasing (continuous) function

from P to P in (3.1),  and if F e  A C ( ( 0 ,Tf l ,  J. .1. Levin (12; Theorem 1’] has

obtained by a different method a result similar to the one to which our Theorem 4 reduces

for this case.
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